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The area of intersection of n equal circular disks 
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Abstract. An analytical expression is given for the area of intersection of three equal 
(circular) disks as a function of the distances. Then it is shown that the intersection of n 
disks can always be reduced to intersections of less than four disks in a definite manner. 
Some physical applications are also discussed. 

1. Introduction 

For the evaluation of the equation of state of a hard-disk fluid it is advantageous to 
calculate as many virial coefficients as possible (Rowlinson 1964, Hemmer 1965, 
Kratky 1976). The virial coefficients consist of cluster integrals the integrands of 
which can be interpreted as (products of) intersections of disks. These formal disks 
have radius d if the original hard disks had diameter d. Thus, a better knowledge of 
the intersection of n disks also has physical consequences. 

In the following, n open disks with unit radius will be considered. The designation 
of the disks corresponds to the designation of their centres. For instance, centre 1 (or 
‘point’ 1) is the centre of disk 1. The geometrical areas of the disks lie within the same 
plane so that the concept of intersection makes sense. 

Definition 1.1. The intersection of n disks has the following three possible meanings 
in the present paper. 

(i) The set Is(1,2, . , . , n)=.(p/rPj  < 1, j = 1 , 2 , .  . . , n}, the points j being fixed at 
definite, but arbitrary positions. 

(ii) The measure of Is, I(1’2,. . . , n), the area in the sense of integration theory. 
I(1,2,. . . , n) is a continuous function of the location of the centres 1 , 2 , .  . . , n, with 
symmetrical indices, and it is only a function of the relative distances. Therefore, one 
can write for example I(r12, r13, r23) instead of I(1, 2, 3). 

(iii) The geometrical area which is characterised by a certain structure of the 
boundary. This area, which is always convex, will be denoted I’(1, 2, , . . , n). 

The order of the numbers of the disks is in principle irrelevant, e.g. I(1, 2, 3)= 
I(1, 3,2). For convenience, a monotonically increasing sequence will be chosen in 
most cases. 

From the definition of Is(l, 2, . . . , n) it follows that 
n 

i = l  
~ ’ ( i ,  2 , .  . . , n ) =  n Is(j>. 
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A typical application of this is: 

[ I s ( l , 2 , 3 ) = I s ( 2 , 3 ) ~ ~ [ I s ( l ,  2, .  . . , n)=Is(2,3, .  . . , n ) l .  

[IS((a)S I S ( 6 ~ 1 ~ [ 1 ( U ) ~ 1 ( 6 ) ] ,  [IS(U) = I"(b)1* [I(a) = I(b)1, (1.3) 

(1.2) 

The same relation holds for I since 

where {a} and (6) are sets of numbers representing the centres of disks at definite 
locations. From (1.1) it follows that 

[ { a }  2 (611 * [I"(a) E I"6)I. (1.4) 

Definition 1.2. The following notation for I is used in this paper (the geometrical area 
Ig will be designated in the same way). 

[IS(1, 2 , .  . . , n ) =  IS( i ) ]e l ( l ,  2 , .  . . , n)= Ii - 

, e 1 ( 1 , 2 , .  . . , n)= Iij, 1 c (i # j)s n 1 r ( i ,  2, . . . , = r(i,  j )  z 0 

Is(i, j )  c Is(i), P(i, j )  c I'(j) 

[Is(l, 2 , .  . . , n)#  0 is not reducible as aboveleI(1,  2 , .  . . , n ) =  112 ...n 

[IS(1,2,. * .  ,n)= 0]@1(1,2, .  . * ,n )=O.  

The fact that the disks have been defined as open guarantees that from 1 = 0  
follows Is= 0 .  The above notation has the advantage that one can deduce the 
essential properties of Is and 1' from the designation of I. For instance, 112...n is an 
intersection where all the disks really contribute. It corresponds to a geometrical area 
which is bounded by n arcs, each coming from one of the disks. 

In this paper, the lemmas will be stated without proof. The proofs of the theorems 
will be outlined. 

2. The intersection of two and of three disks 

Two disks of unit radius have the following intersection: 

I1 = I2 r12 = 0 

0 < r12 < 2 

2 r12, 

2 1/2 where 11 = T,  112 = 2 cos- ' ( r12/2) - fr l2(4-r12)  . This well known result is stated for 
instance by Lee er a1 (1969). I(1,2) is a continuous, monotonically decreasing 
function of r12. 

In the following, we turn to the intersection of three disks, which has been 
calculated by Hemmer (1965) in the case r12 = 1. In the present paper, the general 
case is considered. If r1222, combination of (1.4) and (2.1) yields 1(1,2,3)= 0. If 
r l 2=0 ,  I(1,2, 3)=1(1,3), which has already been studied. Thus, only the case 
0 < r12 < 2 will be considered further. One can divide the possible location of centre 3 
into several regions, where I ( l ,2 ,  3) equals 112,I13,123,I123, or zero, respectively. Ree 
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et a1 (1966) gave a detailed description of these regions in the case of three spheres. 
The same regions now occur in the case of disks. Thus they will not be treated 
further. Only the result for 1123 will be given: 

1123 = $[I1z+I13+ 123- 7~ + ITl/2], 

T’ = [2(r:2r:3 + r:2r;3 + r:3r:3 )- (r;2 + r:3 + r:3 11 
(2.2) 

= [4r:2r:3 - (r:2 + r:, - r:3 )*I. 

IlZ3 has been directly calculated by the author. It can also be determined by means of 
the results of Rowlinson (1963, 1964). 

1123 is symmetrical in r12, r13, and r23 and can also be expressed in terms of the 
circumradius of the triangle (123), see Kratky (1976). A simpler expression can be 
obtained by introducing 8, the angle between r12 and r13. From the relation 

(2.3) 2 2 2  r23 = r12 + r13 - 2r12r13 cos 0 

follows T = 2r12r13 sin 8, compare (2.2). 

can always be reduced to the intersection of two disks, cf Ree et a1 (1966): 
If the centres of the three disks lie on a straight line, the intersection of three disks 

Eventually, a lemma will be stated which deals with the fact that 1(1,2,3) is a 
decreasing function of the distances in a certain sense. 

Lemma 2.1. IS(1,2, 3)cIS(1, 2, 3) and thus 1(1,2,3)SI(1, 2 ,3)  if the triangle (123) 
lies within the triangle (123). Only the relation 1(1,2,3)S 1(1,2,3) is valid if rij 26, 
1 < i < j 6 3 .  

3. The intersection of four disks 

We consider the intersections I ( l ,2 ,  3), 1(1,2,4), 1(1, 3,4), and I(2,3,4) in order to 
investigate I(1, 2, 3,4). If one of those intersections I(i,j, k)  is not Iijk, then 
I(1,2,3,4) can be reduced straightforwardly to the intersection of three disks. For 
example, I ( l , 2 ,3 )=  1(1,2) yields 1(1,2,3,4)= 1(1,2,4), compare equations (1.2), 
(1.3). 

Definition 3.1. Four disks are considered. The condition I(i, j ,  k)= Iijk (for any triple 
of the disks) will be called cI4 in the following. The relation 1(1,2,3,4) = 11234 will be 
termed RI4. 

From the above considerations it follows that C14 is a necessary condition for RI4. 
The case RI4 is characterised by the fact that the convex area Ig(1,2, 3 ,4)  is bounded 
by four arcs which belong to the circles 1-4. In the special numbering of figure 1, one 
can easily deduce the following relations: 

If234 = If23 + 1724 - 1fz ,  If234 = IY34 -+ 1434 - 194. (3.1) 

It follows immediately that the same relations are also valid for I instead of Ig. 
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Figure 1. The area of intersection of four disks. 

Theorem 3.1. C14 together with the condition that the four centres can be interpreted 
as the corners of a convex quadrilateral are necessary and sufficient for RI4 to be valid. 

Proof. C14 is a necessary condition of RI4. If the second condition of the theorem is 
not fulfilled, one centre (e.g. centre 4) lies within the triangle formed by the others. It 
follows that 1(1,2,3,4) = 1(1,2,3) since the supplementary restriction rp4< 1 (see 
definition 1.1) does not reduce IS(1,2, 3) then. On the other hand, from the conditions 
of the theorem it follows that IS(1,2, 3 , 4 ) c  Is& j ,  k )  for any triple i, j ,  k of the four 
disks. Since it can also be shown that IS(1,2, 3 , 4 ) #  0 in this case, it follows 
1(1, 2, 3 ,4)=  11234 (compare definition 1.2). 

The following lemma, which will be used in 0 5, can be proved by means of 
arguments which are analogous to the preceding theorem. 

Lemma 3.2. If centre 4 lies within the triangle (123), it follows that 1(1 ,2 ,3 ,4)=  
I ( l ,2 ,3) .  cI4 is not required now. Even the more general conditions that r12, r13 and 
r23  are at least 1 and ri4S 1 (1 s i G 3) yield I(1,2, 3,4) = I(1,2,3). 

In 0 3, the problem of the determination of 1(1,2,3,4) has been solved 
completely. If cI4 is not fulfilled, e.g. 1(1,2,4)= I(1,2), it follows that I(1,2, 3 , 4 ) =  
1(1,2,3). Examination of cI4 and determination of 1(1,2,3) can be done according to 
0 2. If C14 is fulfilled and one centre (e.g. centre 4) lies within the triangle spanned by 
the others, 1(1 ,2 ,3 ,4)=  I(1,2,3)= 11z3 follows in our example. Only the case RI4 
remains. The corners i and j shall be connected by a diagonal of the quadrilateral 
(1234). Then (3.1) can be generalised to give: 

Of course, k and 1 are also connected by a diagonal under the above assumption, 
yielding a second equation of type (3.2) (compare (3.1)). 

1(1,2,3,4) can be described as a function of r12, r13, r14, 03 and 04, where Oi is the 
angle between r12 and rli. I(1,2, 3 ,4)  remains unchanged if Oi + -ei for i = 3 , 4  
conjointly. Thus, it is sufficient to consider O4 for example only in the region 0 s O4 s v 
(modulo 2 ~ ) .  Table 1 shows the angular dependence of I (1 ,2 ,3 ,4)  in the case 
r 1 2  = 1.5 ,  r13 = 1.0, and r14=0*5. 
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Table 1. 1(1,2,3,4) as a function of O3 and 6 4  for r12 = 1.5, 113 = 1.0, and 114 = 0.5. The 
disks have unit radius. 

0 0 I12 0.45331 
1 1124 0.44459 

3 124 0,05024 
4 0 0.0 

2 1124 0.28185 3-5 0-4 0 0.0 

1 0 1123 0.36110 6 0 1123 0.07756 
1 1123 0.36110 1 11234 0.06885 
2 11234 0.27996 2 I234 0.01331 
3 124 0.05024 3 1234 0~00002 
4 0 0.0 4 0 0.0 

2 0 1123 0.07756 7 0 1123 0.36110 
1 1123 0,07756 1 11234 0.35239 
2 1123 0.07756 2 I1234 0.18964 
3 1234 0.02446 3 I234 0.03720 
4 0 0.0 4 0 0.0 

t Compare definition 1.2. 

4. The general case of n disks 

In this section, the above considerations will be generalised to the case of n disks. 

Definition 4.1. The condition I ( i ,  j ,  k )  = I i j k  for any triple of n centres of disks (n 3 3 )  
is called CI,. The relation I ( l ,2 ,  . . . , n ) =  II~. . . ,  is called RI,. 

CI, is a necessary condition for RI, ; compare the case n = 4 in 0 3.  For n = 3, CI, 
and RI, are identical. 

Definition 4.2. Assume n distinct points in a plane (n 3 3),  none of which lie on the 
straight line through any other two. Each pair of points is connected by a line 
segment. A convex polygon of m points enveloping the figure is generated. The 
polygon is called P: (3 S m 4 n )  with corners numbered 1,2, . . . , m. 

The m corners of Pr yield m pairs of neighbouring points of the polygon; the 
remaining m ( m  - 3)/2 pairs are connected by a diagonal of the polygon. 

Lemma 4.1.  On the presuppositions of definition 4.2, PE = P :  if and only if no point 
lies within the triangle formed by any triple out of the n - 1 other points. 

In 0 3, n = 4 has been studied. In the case cI4, two possibilities have been found; 
either the four centres form a convex quadrilateral, or one point lies within the 
triangle spanned by the others. Now, these cases can be classified as P: and P:, 
respectively. There is no other possibility for n = 4  since 3 S m  S n  (compare 
definition 4.2) follows from the condition that the n points are distinct and none of the 
n points lie on the straight line through two other points, for which C14 is a sufficient 
condition, cf equation (2.4). 
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Figure 2. An example for Pi (see definition 4.2). 

Lemma 4.2. If the centres of n disks form a polygon Py with m < n, it follows that 
I(1,2, .  . . , n ) =  1(1,2, .  . . , m). 

Thus, it is sufficient to concentrate on the case P: in order to study RI,,, i.e. I12 ...,. 

Theorem 4.3. CI,, together with the condition that the n centres form P: are neces- 
sary and sufficient for RI,,. 

Proof. The first part of the proof (‘necessary’) has already been outlined. This will 
now be done for the second part (‘sufficient’). In analogy to theorem 3.1, it can be 
shown that IS(1,2, . . . , n ) ~  Is@), {p}  being a set of n - 1 centres arbitrarily selected 
from the n centres. Furthermore, IS(1,2, .  . . , n ) #  0. This results in I ( 1 , 2 , .  , . , n ) =  
I12...,, (see definition 1.2). 

Theorem 4.4. The intersection of n disks can always be reduced to contributions from 
intersections of less than four disks. It can be evaluated explicitly. 

Proof (by complete induction). For n S 3, nothing has to be proved. Now, it will be 
assumed that the proposition is true for all numbers of centres less than n (n  > 3). It 
will be shown that the proposition is then also true for n disks. If CI, is not fulfilled or 
m < n is valid for PE, a direct reduction of I(1, 2, . . . , n )  to an intersection of E disks is 
possible (A C n), see lemma 4.2. The proposition follows from this. Therefore, only 
the case RI, has to be considered further. In this case, two corners (e.g. numbered 
1 ,2 )  are selected from Pi which are connected by a diagonal of P:. Then, there exist 
at least two other points (e.g. called 3 ,4)  of Pi which also define a diagonal of P i  and 
which fulfill the following condition: the line segment connecting 1 and 2 is also a 
diagonal of the (convex) quadrilateral which is formed by the points 1-4. It follows 
that I’(1, 2, 3 ,4)=  If234 = If34+Iq34-154 (compare (3.1), (3.2)). Restricting both sides 
of the equation additionally to I!..., yields 

IY234 ... n = If34...n -t I?34..., - I&...,. (4.1) 

In the consequence, the same relation holds for 11234...n. Since the intersection of less 
than n disks can be reduced further due to the assumption, I1234..., can be represented 
finally as a sum (difference) of intersections of less than four disks. These intersections 
are known explicitly. 
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If a diagonal connects the centres i and j ,  (4.1) can be generalised to 

If2 ... hijk ... n = If2 ... hik ... n + 1 7 2  ... hjk ... n- If2 ... hk ... n (4.2) 

P: has n(n  -3)/2 diagonals. Thus one has n(n  -3)/2 equations of  type (4.2) which 
yield the same 11234 ...,,. Eventually, from this it follows that the representation of 
11234...n as a sum (difference) of intersections of less than four disks is not unique. This 
results in a set of relations between these intersections. In the case of n = 4, there is 
one relation, i.e. 

1123 -+ 1124-112 = 1134+1~34-134 (4.3) 

if 1 and 2 are connected by a diagonal of P:, see (3.1). 

5. Physical applications 

In the case of hard disks, the area of intersection of disks occurs as an integrand in the 
Mayer cluster integrals, see 0 1. To be more accurate, the so called complete star 
graph dn contributing to the virial coefficient Bn has the integrand I(1,2, . . . , n - 1). 
The other clusters are simpler, containing products of I ( l ,2 ,  . . . , m) with m < n - 1 
(Kratky 1976). If these intersections were not known, all Mayer clusters contributing 
to B, would consist in (2n - 3)-fold integration in the case of disks. Using the results 
of this paper, 2n - 5 variables of integration occur for 4,,, at most 2n - 7 variables for 
the other integrals. Thus, a great portion of the cluster integrals is simplified 
considerably and can be evaluated numerically for n S 7.  Incidentally, the Mayer 
cluster expansion up to B7 was exhibited by Hoover and DeRocco (1962). 

B3 and B4 are even known analytically for hard disks (Rowlinson 1964, Hemmer 
1965). B5 is known accurately (Kratky 1976). When determining B5, the author used 
1(1,2,3). This was sufficient for all clusters except 45, yielding at most three-fold 
integration which was carried out numerically. Since 45 is a definite function of the 
other clusters in the case of hard disks (Ree and Hoover 1964, Kratky 1976), it was 
not necessary to calculate 45 directly when evaluating B5. With the help of the 
present paper, it will also be possible to increase the accuracy of B6. All Mayer 
clusters except 46 are now accessible to numerical integration with reasonable 
accuracy. Again, 46 is a definite function of the other clusters. Thus, one can avoid 
the difficulty that 46 consists of a seven-fold integration, the integrand being 

The Mayer cluster integrals can be combined to a new set of integrals, the so called 
Hoover graphs (Ree and Hoover 1964, 1967, Kilpatrick 1971, Kratky 1976). One of 
the five Hoover graphs contributing to BS has the value zero for hard disks. This 
graph will be denoted (111) in the following according to Kratky (1976). That the 
value of (111) is zero has been shown by Ree and Hoover (1964). It is also a 
consequence of lemma 3.2. The integrand of (111) can be interpreted as 1(1,2,3,4)- 
1(1,2,3). It is restricted to a region where lemma 3.2 can be used. Since (111) is a 
linear combination of Mayer clusters including &, from (111) = 0 it follows that 45 is a 
function of the other Mayer cluster integrals (see above). 

A further application of the results of this paper lies in the field of distribution 
functions which are also connected with the equation of state (Rowlinson 1963, 
Hemmer 1965, Ree et a1 1966). In the theory of Born, Green, and Yvon (BGY), the 
superposition approximation yields deviations from the correct triplet distribution 

1(1,2,3,4,5). 
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function, -I(l, 2,3) being the first correction term (Rowlinson 1963, Lee et al 1968, 
1969). This is valid for instance for disks and spheres. B G Y ~ ,  an improvement of BGY 
theory, has been proposed by Lee et a1 (1968, 1971). It has been applied to hard 
spheres with remarkable success. The better knowledge of I(1,2,. . . n) in the case of 
disks due to the present work can help when considering B G Y ~  for hard disks. 
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